

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 52The Embedded Muse 52The Embedded Muse 52The Embedded Muse 52
Editor: Jack Ganssle (jack@ganssle.com) October 4, 2000

MISRA ReviewMISRA ReviewMISRA ReviewMISRA Review
Frequent contributors to the comp.arch.embedded newsgroup sometimes refer to the
MISRA (Motor Industry Software Reliability Association) publication “Guidelines For
the Use of The C Language in Vehicle Based Software”. As one interested in the
firmware reliability (is that an oxymoron?) I wanted to check out this publication, but
was frustrated by its unavailability on the net. So I ordered a copy from England (35
pounds for overseas shipments) through the web site (http://www.misra.org.uk).

In just a few weeks the 70 page bound booklet arrived. It’s emphatically NOT a software
standard; rather, the authors define safe ways to use some C constructs and identify
others that must be avoided. Use these guidelines in concert with a real standard, one that
defines coding styles, commenting conventions, and the like (you’re welcome to
download the one I use from http://www.ganssle.com/misc/fsm.doc).

While C is indeed a very powerful language, it should come with a warning label:
“danger: experts only”. It’s so easy to create programs that leak memory, run pointers
wildly all over memory, or create other difficult-to-find havoc.

The MISRA standard, a collection of 127 coding rules, tries to prevent problems by
limiting the types of C constructs we use, and defining safe ways to use others.

Quite a few of the MISRA rules make tremendous sense: don’t redefine reserved words
and standard library function names. Document and explain all uses of #pragma. When a
function may return an error, always test for that error. Functions should have a single
exit point.

Some are interesting: never use recursion. Keep pointer indirection to no more than two
levels.

A couple are hard but possibly quite valuable: check every value passed to every library
routine. Avoid many common library functions.

Other are trivial: only use characters defined by the ISO C standard. Don’t nest
comments. Write code conforming to ANSI C. Don’t confuse logical and bitwise
operators. Don’t have unreachable code.

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Some of the requirements I find disturbing. For instance, rule 118 prohibits the use of
dynamic memory allocation. Not a bad idea, due to problems associated with
fragmentation. But there are alternatives to malloc/free that still give us the benefits of
dynamic memory allocation without the pitfalls. More problematic, this rule tells us not
to use library functions which employ dynamic memory, specifically mentioning string.h.
This seems awfully restrictive to me… I sure don’t want to write my own string
handlers… and further, how is one to identify the suspect libraries?

Rule 122 prohibits the use of setjmp and longjmp. These are worse than gotos, of course,
in that they let us branch to specific memory addresses. Yet in a few cases longjmp is
almost unavoidable.

I think there’s much value to the document, but as a stand-alone set of rules it’s
incomplete. Better, incorporate the rules into your in-house software standard. It’s just
too hard to conform to two sets of rules living in two different documents.

If MISRA published the rules on-line, they’d be more accessible to the embedded
community, hopefully improving the quality of code everywhere. Without such an
electronic copy, I doubt if many will ever incorporate these rules into their own
standards.

Thought for the WeekThought for the WeekThought for the WeekThought for the Week
In the 80s:
Recruiter: "Tell me the meanings of all the extensions to file names"
Candidate: "VMS or MS-DOS?"
Recruiter: "You got the job!"

In the 90s:
Recruiter: "Tell me all the options used by /bin/ls"
Candidate: "BSD options or System V?"
Recruiter: "You got the job!"

In the 00s:
Candidate: "Tell me all the options"
Recruiter: "20000, 1 year vesting, $1 strike price, IPO next month"
Candidate: "I'll take the job!"

Copyright 2001 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

About The Embedded MuseAbout The Embedded MuseAbout The Embedded MuseAbout The Embedded Muse
The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

