

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

The Embedded Muse 119
Editor: Jack Ganssle (jack@ganssle.com) Nov. 4, 2005

You may redistribute this newsletter for noncommercial purposes. For commercial use
contact info@ganssle.com.

EDITOR: Jack Ganssle, jack@ganssle.com

CONTENTS:
- Editor’s Notes
- How Much Software can be Developed in a year?
- Call for Articles for Computer
- Bill’s Lesson
- Windows Turns 20
- Jobs!
- Joke for the Week
- About The Embedded Muse

Editor’s Notes

Do you want to increase your team’s productivity? Reduce bugs? Meet deadlines? Take
my one day Better Firmware Faster seminar. You’ll learn to thwart schedule-killing bugs,
manage reuse, build predictable real-time code, better ways to deal with uniquely
embedded problems like reentrancy, heaps, stacks, and much, much more.

I’m presenting this on two dates:
- Chicago, IL on December 5
- Irvine, CA on December 7

Want to be your company’s embedded guru? Join us! There’s more info at
http://www.ganssle.com/classes.htm , including cheap flights to these cities from around
the USA.

If your outfit has a dozen or more engineers who can benefit from this training I can
present the seminar on-site. See http://www.ganssle.com/classes.htm .

After getting many requests I’ve decided to start a blog. It’ll contain my thoughts and
observations about all sorts of things, and won’t exclusively be about embedded systems.
See http://jackganssle.blogspot.com .

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

How Much Software can be Developed in a
Year?

QSM, a company that maintains a vast database about software projects, looked into how
much code we can develop in a year. See
http://www.qsm.com/Develop_12%20months.pdf for the full report.

Only about 10% of projects they studied delivered more than 75,000 SLOC in 12 months.
But those efforts spent a pile of money cranking so much code so fast. These big projects
burned 117% to 419% more cash than a similar 139,000 SLOC project delivered over a
longer period. Fast is expensive.

About 60% of the projects shipped under 10,000 SLOC in a year.

The report concludes that the biggest program practically possible in 12 months runs
about 180,000 SLOC, and will use a team of 70 to 100 people. It will cost two to four
times more than the same project with a more relaxed schedule.

That works out to 150 to 214 SLOC per programmer per month.

Call for Articles for Computer

Rick Schrenker is a frequent correspondent who is working on an special issue of
Computer magazine about the safe use of embedded systems in hospital settings, and is
looking for contributors. Here’s the solicitation:

IEEE Computer seeks articles for a special issue to appear in April 2006 on the software
engineering and application of software-based medical devices and device systems. The
guest editor is Rick Schrenker, Department of Biomedical Engineering, Massachusetts
General Hospital; http://biomed.partners.org. The Institute of Medicine's 1999 report, To
Err Is Human, estimated that as many as 98,000 Americans were dying annually as a
result of medical errors. The section titled "Why Do Accidents Happen?" states "People
... become accustomed to design defects and learn to work around them, so often they are
not recognized" and "Accidents are more likely to happen in certain types of systems.
When they do occur, they represent failures in the way systems are designed. The
primary objective of systems design ought to be to make it difficult for accidents and
errors to occur and minimize damage if they do occur." Given the hundreds to thousands
of technically and clinically heterogeneous medical equipment models (and their
attendant software) used in large medical facilities, the increasing complexity facing
medical device users and the clinical engineering community is almost overwhelming.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

This special issue looks at the challenges facing the medical industry as a whole, and the
clinical engineering community in particular, in realizing the promise of modern medical
technology. Topics of interest include

* The application of software engineering in the development of systems that span the
spectrum of care-for example, home, community, community hospital, academic medical
center, and regional health care systems;

* The application of software engineering in the development of systems in high- intensity
care-delivery settings-for example, intensive care units or operating rooms, where various
clinically and technically heterogeneous devices and systems can be applied to provide
patient care, often in concert; and

* Lifecycle maintenance, management, and safety assurance of software-based medical
devices and systems, duly considering both the care environment and the technological
sophistication of users and potential interactions with coresident devices.

The submission deadline is 1 December 2005. Author guidelines and submission
instructions are available at www.computer.org/portal/pages/computer/mc/author.html.
Send inquiries to the guest editor at raschrenker@partners.org.

Bill’s Lesson

Sharon Foster has kindly contributed another piece:

I was working at a company named T-bar, which made data communications equipment
for switching mainframes and peripherals. They had been building electro-mechanical
systems for many years, and had recently developed an automated system using the Intel
blue-box. The initial software development for the automated switch had been done by an
outside consultant, but now the time had come--as it does in the life of any truly useful
product--to add some new features, and I had been hired to do that as their first full- time
software engineer.

My boss was Bill Landesberg, an electrical engineer who had been involved in some very
early developments in the computer field, including mercury delay line computer
memory. (You can Google it.) Bill had no software background--which fact he repeatedly
reminded me of, sometimes to the point of annoyance. (He also had some very off-color
jokes in his vast repertoire, but that’s a story for another time.)

My previous experience had been with the PDP-11 family of minicomputers in an R&D
environment, so Intel, 8 floppies, PL/M, and commercial products were all new to me. I

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

was very proud of myself when one day I called my boss into the lab that was also my
office, to show him I had implemented the first of several enhancements he had
requested. This particular enhancement had to do with giving the operator the ability to
monitor or test any of the communications paths, and so Bill dutifully typed first the
MON: command and then the TST: command at the command prompt. Everything
worked as planned, and I was feeling very confident and ready to humbly accept an
AttaGirl!

But that’s not what came next. Bill then proceeded to type MON: followed by a string of
random characters having nothing to do with the very rigid and well-defined syntax of the
command. The system crashed. Bill just shrugged, waved his hands over the machine and
said simply, Fix it.

“But but,” I sputtered, “You weren’t supposed to type that!”

“But I did,” he replied, and walked away, shaking his head.

And so it came to pass that an electrical engineer who knew nothing about software
taught me the most important lesson I have ever learned, either before or since, about
software development. It was Murphy’s Law in its most immediate and concrete form.
Users will make mistakes, and the software has to protect itself and the hardware--and the
user--from those mistakes. It’s a lesson that also applies to interfaces between any
software components, as well as to interfaces between software systems and human
beings. In this case it was not a safety- or mission-critical system, but in the years to
come I did have the opportunity to develop and test such systems, and Bill’s lesson has
been with me every day.

Comment from Jack: 50 years of software engineering has taught us not to expect
precision from users. We *know* we have to accept bad inputs, and to handle boundary
conditions in functions.

But for some reason too many of us ignore these lessons.

Windows Turns 20

Microsoft Windows is 20 years old. See
http://www.pcmag.com/article2/0,1895,1868435,00.asp for a history of the OS.

When Apple introduced the first Mac I went to the local computer store to see this
wonder that the world was marveling about. The mouse metaphor was confusing at first –
what do you do when the mouse runs off the edge of the desk? But I was captivated and
immediately bought one of the first units.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

Then Microsoft released Windows 1.0, a bulky, clunky environment that required an
ungodly 256KB (that’s K, not M) if RAM. Thinking that it might bring a Mac- like
environment to the PC I ordered a copy… and found it to be totally unusable. Frankly,
the early Mac was almost as bad; to do anything you tediously swapped floppy disks in
and out of the drive. But Windows 1.0 was much worse.

Windows 2.0 was, well, nearly as bad. 3.0 Came out and we saw a glimmer of hope.
Only with the introduction of Windows 3.1 did Microsoft finally have a more or less
useable GUI. And 3.11 brought us networking, in an era when no one was sure if
Ethernet, Arcnet, or one of a number of other approaches would dominate.

All these years later any desktop app, let alone an entire OS, that could fit into 256KB of
RAM seems quaint. My Windows XP desktop has 400 GB of disk space and a gig of
RAM. And it’s still not fast enough, too often slowed by monstrous programs that
consume every resource available.

I didn’t have gray hair before Windows. Maybe those of us middle-aged engineers who
spent years of dealing with crashes and control-alt-deletes could pursue a class-action suit
against Microsoft for aging us prematurely! But they finally did get Windows more or
less right. I use it – and Linux – every day, and benefit from both the capabilities of both.

It’ll be interesting to see what *useful* features Vista (once known as Longhorn) brings.
And even more intriguing to see how much memory and disk space it requires.

Jobs!

Let me know if you’re hiring firmware or embedded designers. I’ll continue to run
notices for embedded developers as long as the job situation stays in the dumper. No
recruiters please.

Microwave Networks, Inc., a leading designer of point-to-point microwave radio
products, is currently looking for an embedded software engineer. This engineer will be
working on our next-generation microwave radio products. We need someone with 3+
years of embedded programming, with special emphasis on commercial RTOS (we use
Nucleus, but any of the more well-known RTOS's is sufficient), TCP/IP programming
(telnet, SNMP, TFTP, etc. - data encryption a plus), and basic communications theory.
http://www.microwavenetworks.com/employment.htm to apply.

Do you want to work with a global leader? If you do, then bSQUARE wants to talk to
you today. bSQUARE is the leading system integrator in the Windows Embedded Market

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

focused on helping Tier 1 thru Tier 3 device makers bring their products to life!
bSQUARE works with Windows Mobile, Windows CE, and Windows XPE. The smart
device market is growing rapidly and bSQUARE is growing strong in this increased
demand for embedded systems service and solutions.

We are looking for Platform Engineers who will be responsible for the design and
development of drivers and system-level OS components for adaptations of Windows
Embedded (CE, XP) to various platforms. We are also on the lookout for good
Applications Engineers that will design Architecture and develop Win32-based apps for
WinCE based platforms. Email your resume for immediate consideration to
kimberlyh@bsquare.com. bSQUARE has offices in Bellevue Washington, Akron Ohio,
San Diego, and Taiwan. Check us out at www.bsquare.com.

Joke for the Week

Catherine French contributed this one:

1. When computing, whatever happens, behave as though you meant it to happen.

2. When you get to the point where you really understand your computer, it's probably
obsolete.

3. The first place to look for information is in the section of the manual where you least
expect to find it.

4. When the going gets tough, upgrade.

5. For every action, there is an equal and opposite malfunction.

6. To err is human . . . to blame your computer for your mistakes is not even more
human, it is downright natural.

7. He who laughs last probably made a back-up.

8. If at first you do not succeed, blame your computer.

9. A complex system that does not work is invariably found to have evolved from a
simpler system that worked perfectly.

10. The number one cause of computer problems is computer solutions.

Copyright 2003 by The Ganssle Group. All Rights Reserved. You may distribute this for
non-commercial purposes. Contact us at info@ganssle.com for more information.

The Ganssle Group, www.ganssle.com

About The Embedded Muse

The Embedded Muse is an occasional newsletter sent via email by Jack Ganssle. Send
complaints, comments, and contributions to him at jack@ganssle.com.

To subscribe, send a message to majordomo@ganssle.com, with the
words “subscribe embedded your-email-address” in the body. To unsubscribe, change the
message to “unsubscribe embedded your-email-address”.

The Embedded Muse is supported by The Ganssle Group, whose mission is to help
embedded folks get better products to market faster. We offer seminars at your site
offering hard-hitting ideas - and action - you can take now to improve firmware quality
and decrease development time. Contact us at info@ganssle.com for more information.

