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Floating Point Approximations 
 
Most embedded processors don’t know how to compute trig and other complex functions. 
Programming in C we’re content to call a library routine that does all of the work for us. 
Unhappily this optimistic approach often fails in real time systems where size, speed and 
accuracy are all important issues. 
 
The compiler’s runtime package is a one-size-fits-all proposition. It gives a reasonable 
trade-off of speed and precision. But every embedded system is different, with different 
requirements. In some cases it makes sense to write our own approximation routines. 
Why? 
 

Speed – Many compilers have very slow runtime packages. A clever 
approximation may eliminate the need to use a faster CPU. 
 
Predictability – Compiler functions vary greatly in execution time depending on 
the input argument. Real time systems must be predictable in the time domain. 
The alternative is to always assume worst case execution time, which again may 
mean your CPU is too slow, too loaded, for the application. 
 
Accuracy – Read the compiler’s manuals carefully! Some explicitly do not 
support the ASNI C standard, which requires all trig to be double precision. (8051 
compilers are notorious for this). Alternatively, why pay the cost (in time) for 
double precision math when you only need 5 digits of accuracy? 
 
Size – When memory is scarce, using one of these approximations may save much 
code space. If you only need a simple cosine, why include the entire floating point 
trig library? 

 
This collection is not an encyclopedia of all possible approximations; rather, it’s the most 
practical ones distilled from the bible of the subject, Computer Approximations by John 
Hart (ISBN 0-88275-642-7). Unfortunately this work is now out of print. It’s also very 
difficult to use without a rigorous mathematical background.  
 
All of the approximations here are polynomials, or ratios of polynomials. All use very 
cryptic coefficients derived from Chebyshev series and Bessel functions. Rest assured 
that these numbers give minimum errors for the indicated ranges. Each approximation 
(with a few exceptions) has an error chart so you can see exactly where the errors occur. 
In some cases, if you’re using a limited range of input data, your accuracies can far 
exceed the indicated values. For instance, cos_73 is accurate to 7.3 decimal digits over 
the 0 to 360 degree range. But as the graph shows, in the range 0 to 30 degrees you can 
get almost an order of magnitude improvement. 
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Do be wary of the precision of your compiler’s floating point package. Some treat 
doubles as floats. Others, especially for tiny CPUs like the PIC, cheat and offer less 
than full 32 bit floating point precision. 
All of the code for the following approximations was compiled with Microsoft’s Visual 
C++ 6.0. The source is available at www.ganssle.com/approx/sincos.cpp. It includes test 
code that writes a text file of results and errors; imported to a spreadsheet we can see just 
how accurate they are.  

General Trig Notes 
We generally work in radians rather than degrees. The 360 degrees in a circle are 
equivalent to 2π radians; thus, one radian is 360/(2 π), or about 57.3 degrees. This may 
seem a bit odd till you think of the circle’s circumference, which is 2πr; if r (the circle’s 
radius) is one, the circumference is indeed 2 π. 
 
The conversions between radians and degrees are:  
 

Angle in radians= angle in degrees * 2 π /360 
Angle in degrees= angle in radians * 360/(2 π) 
 

 
Degrees Radians Sine Cosine Tangent 

0 0 0 1 0 
45 π/4 √2/2 √2/2 1 
90 π/2 1 0 infinity 
135 3 π/4 √2/2 -√2/2 -1 
180 π 0 -1 Infinity 
225 5 π/4 -√2/2 -√2/2 1 
270 3 π/2 -1 0 Infinity 
315 7 π/4 -√2/2 √2/2 -1 
360 2 π 0 1 0 

 
 

Cosine and Sine 
The following examples all approximate the cosine function; sine is derived from cosine 
via the relationship: 
 

sin(x)=cos(π/2-x) 
 

In other words, the sine and cosine are the same function, merely shifted 90º in phase. 
The sine code is (assuming we’re calling cos_32, the lowest accuracy cosine 
approximation): 
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All of the cosine approximations in this chapter compute the cosine accurately over the 
range of 0 to π/2 (0 to 90º). That surely denies us of most of the circle! Approximations 
in general work best over rather limited ranges; it’s up to us to reduce the input range to 
something the approximation can handle accurately. 
 
Therefore, before calling any of the following cosine approximations we assume the 
range has been reduced to 0 to π/2 using the following code: 

 
This code is configured to call cos_32s, which is the approximation (detailed shortly) 
for computing the cosine to 3.2 digits accuracy. Use this same code, though, for all cosine 
approximations; change cos_32s to cos_52s, cos_73s or cos_121s, depending 
on which level of accuracy you need. See the complete listing for a comprehensive 
example. 
 
If you can guarantee that the input argument will be greater than zero and less than 2 π, 
delete the two red lines in the listing above to get even faster execution. 
 
Be clever about declaring variables and constants. Clearly, working with the cos_32 
approximation nothing must be declared “double”. Use float for more efficient code. 

// Math constants  
double const pi=3.1415926535897932384626433;// pi 
double const twopi=2.0*pi;  // pi times 2 
double const halfpi=pi/2.0;  // pi divided by 2 
// 
//  This is the main cosine approximation "driver" 
// It reduces the input argument's range to [0, pi/2], 
// and then calls the approximator.  
// 
float cos_32(float x){ 
 int quad;    // what quadrant are we in? 
 
 x=fmod(x, twopi);   // Get rid of values > 2* pi 
 if(x<0)x=-x;   // cos(-x) = cos(x) 
 quad=int(x/halfpi);  // Get quadrant # (0 to 3) switch (quad){ 
 case 0: return  cos_32s(x); 
 case 1: return -cos_32s(pi-x); 
 case 2: return -cos_32s(x-pi); 
 case 3: return  cos_32s(twopi-x); 
 } 
} 

 
//   The sine is just cosine shifted a half-pi, so 
// we'll adjust the argument and call the cosine approximation. 
// 
float sin_32(float x){ 
 return cos_32(halfpi-x); 
} 



© 2001 The Ganssle Group. This work may be used by individuals and companies, but 
all publication rights reserved. 

Reading the complete listing you’ll notice that for cos_32 and cos_52 we used floats 
everywhere; the more accurate approximations declare things as doubles.  
 
One trick that will speed up the approximations is to compute x2 by incrementing the 
characteristic of the floating point representation of x. You’ll have to know exactly how 
the numbers are stored, but can save hundreds of microseconds over performing the much 
clearer “x*x” operation. 
 
How does the range reduction work? Note that the code divides the input argument into 
one of four “quadrants” – the very same quadrants of the circle shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Quadrants 0 to 3 of the circle 
 

• For the first quadrant (0 to π/2) there’s nothing to do since the cosine 
approximations are valid over this range. 

• In quadrant 1 the cosine is symertrical with quadrant 0, if we reduce it’s range by 
subtracting the argument from π. The cosine, though, is negative for quadrants 1 
and 2 so we compute –cos(π-x). 

• Quadrant 2 is similar to 1. 
• Finally, in 3 the cosine goes positive again; if we subtract the argument from 2 π 

it translates back to something between 0 and π/2. 
 
The approximations do convert the basic polynomial to a simpler, much less 
computationally expensive form, as described in the comments. All floating point 
operations take appreciable amounts of time, so it’s important to optimize the design. 
 

 

0 

π/2

π

3π/2 

0

3

1

2 



© 2001 The Ganssle Group. This work may be used by individuals and companies, but 
all publication rights reserved. 

cos_32 &  sin_32 absolute error

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180 210 240 270 300 330 360
Degrees

co
s(

x)

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

Er
ro

r

cos(x) cos_32  error  sin_32 error

 

 
 
cos_32 computes a cosine to about 3.2 decimal digits of accuracy. Use the range 
reduction code (listed earlier) if the range exceeds 0 to π/2. The plotted errors are 
absolute (not percent error).

//  cos_32s computes cosine (x) 
// 
//  Accurate to about 3.2 decimal digits over the range [0, pi/2]. 
//  The input argument is in radians. 
// 
//  Algorithm: 
//  cos(x)= c1 + c2*x**2 + c3*x**4 
//   which is the same as: 
//  cos(x)= c1 + x**2(c2 + c3*x**2) 
// 
float cos_32s(float x) 
{ 
const float c1= 0.99940307; 
const float c2=-0.49558072; 
const float c3= 0.03679168; 
 
float x2;      // The input argument squared 
 
x2=x * x; 
return (c1 + x2*(c2 + c3 * x2)); 
} 
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cos_52 computes a cosine to about 5.2 decimal digits of accuracy. Use the range 
reduction code (listed earlier) if the range exceeds 0 to π/2. The plotted errors are 
absolute (not percent error).

//  cos_52s computes cosine (x) 
// 
//  Accurate to about 5.2 decimal digits over the range [0, pi/2]. 
//  The input argument is in radians. 
// 
//  Algorithm: 
//  cos(x)= c1 + c2*x**2 + c3*x**4 + c4*x**6 
//   which is the same as: 
//  cos(x)= c1 + x**2(c2 + c3*x**2 + c4*x**4) 
//  cos(x)= c1 + x**2(c2 + x**2(c3 + c4*x**2)) 
// 
float cos_52s(float x) 
{ 
const float c1= 0.9999932946; 
const float c2=-0.4999124376; 
const float c3= 0.0414877472; 
const float c4=-0.0012712095; 
float x2;      // The input argument squared 
 
x2=x * x; 
return (c1 + x2*(c2 + x2*(c3 + c4*x2))); 
} 
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cos_73 &  sin_73 absolute error
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cos_73 computes a cosine to about 7.3 decimal digits of accuracy. Use the range 
reduction code (listed earlier) if the range exceeds 0 to π/2. Also plan on using double 
precision math for the range reduction code to avoid losing accuracy. The plotted errors 
are absolute (not percent error).

//  cos_73s computes cosine (x) 
// 
//  Accurate to about 7.3 decimal digits over the range [0, pi/2]. 
//  The input argument is in radians. 
// 
//  Algorithm: 
//  cos(x)= c1 + c2*x**2 + c3*x**4 + c4*x**6 + c5*x**8 
//   which is the same as: 
//  cos(x)= c1 + x**2(c2 + c3*x**2 + c4*x**4 + c5*x**6) 
//  cos(x)= c1 + x**2(c2 + x**2(c3 + c4*x**2 + c5*x**4)) 
//  cos(x)= c1 + x**2(c2 + x**2(c3 + x**2(c4 + c5*x**2))) 
// 
double cos_73s(double x) 
{ 
const double c1= 0.999999953464; 
const double c2=-0.4999999053455; 
const double c3= 0.0416635846769; 
const double c4=-0.0013853704264; 
const double c5= 0.000023233 ;  // Note: this is a better coefficient than Hart's 
      //   submitted by Steven Perkins 2/22/07 
double x2;     // The input argument squared 
 
x2=x * x; 
return (c1 + x2*(c2 + x2*(c3 + x2*(c4 + c5*x2)))); 
}
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cos_121 computes a cosine to about 12.1 decimal digits of accuracy. Use the range 
reduction code (listed earlier) if the range exceeds 0 to π/2. Also plan on using double 

//  cos_121s computes cosine (x) 
// 
//  Accurate to about 12.1 decimal digits over the range [0, pi/2]. 
//  The input argument is in radians. 
// 
//  Algorithm: 
// cos(x)= c1+c2*x**2+c3*x**4+c4*x**6+c5*x**8+c6*x**10+c7*x**12 
//   which is the same as: 
// cos(x)= c1+x**2(c2+c3*x**2+c4*x**4+c5*x**6+c6*x**8+c7*x**10) 
// cos(x)= c1+x**2(c2+x**2(c3+c4*x**2+c5*x**4+c6*x**6+c7*x**8 )) 
// cos(x)= c1+x**2(c2+x**2(c3+x**2(c4+c5*x**2+c6*x**4+c7*x**6 ))) 
// cos(x)= c1+x**2(c2+x**2(c3+x**2(c4+x**2(c5+c6*x**2+c7*x**4 )))) 
// cos(x)= c1+x**2(c2+x**2(c3+x**2(c4+x**2(c5+x**2(c6+c7*x**2 ))))) 
// 
double cos_121s(double x) 
{ 
const double c1= 0.99999999999925182; 
const double c2=-0.49999999997024012; 
const double c3= 0.041666666473384543; 
const double c4=-0.001388888418000423; 
const double c5= 0.0000248010406484558; 
const double c6=-0.0000002752469638432; 
const double c7= 0.0000000019907856854; 
double x2;      // The input argument squared 
 
x2=x * x; 
return (c1 + x2*(c2 + x2*(c3 + x2*(c4 + x2*(c5 + x2*(c6 + c7*x2)))))); 
} 
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precision math for the range reduction code to avoid losing accuracy. The plotted errors 
are absolute (not percent error). 

Higher Precision Cosines 
Given a large enough polynomial there’s no limit to the possible accuracy. A few more 
algorithms are listed here. These are all valid for the range of 0 to π/2, and all can use the 
previous range reduction algorithm to change any angle into one within this range. All 
take an input argument in radians. 
  
No graphs are included because these exceed the accuracy of the typical compiler’s built-
in cosine function… so there’s nothing to plot the data against. 
 
Note that C’s double type on most computers carries about 15 digits of precision. So 
for these algorithms, especially for the 20.2 and 23.1 digit versions, you’ll need to use a 
data type that offers more bits. Some C’s support a long double. But check the 
manual carefully! Microsoft’s Visual C++, for instance, while it does support the long 
double keyword, converts all of these to double.  
 
Accurate to about 14.7 decimal digits over the range [0, π/2]: 

c1= 0.99999999999999806767 
c2=-0.4999999999998996568 
c3= 0.04166666666581174292 
c4=-0.001388888886113613522 
c5= 0.000024801582876042427 
c6=-0.0000002755693576863181 
c7= 0.0000000020858327958707 
c8=-0.000000000011080716368 
cos(x)= c1 + x2(c2 + x2(c3 + x2(c4 + x2(c5 +  

       x2(c6 + x2(c7 + x2*c8)))))) 
 
Accurate to about 20.2 decimal digits over the range [0, π/2]: 

c1 = 0.9999999999999999999936329 
c2 =-0.49999999999999999948362843 
c3 = 0.04166666666666665975670054 
c4 =-0.00138888888888885302082298 
c5 = 0.000024801587301492746422297 
c6 =-0.00000027557319209666748555 
c7 = 0.0000000020876755667423458605 
c8 =-0.0000000000114706701991777771 
c9 = 0.0000000000000477687298095717 
c10=-0.00000000000000015119893746887 
cos(x)= c1 + x2(c2 + x2(c3 + x2(c4 + x2(c5 + x2(c6 +  

       x2(c7 + x2(c8 + x2(c9 + x2*c10)))))))) 
 
Accurate to about 23.1 decimal digits over the range [0, π/2]: 

c1 = 0.9999999999999999999999914771 
c2 =-0.4999999999999999999991637437 
c3 = 0.04166666666666666665319411988 
c4 =-0.00138888888888888880310186415 
c5 = 0.00002480158730158702330045157 
c6 =-0.000000275573192239332256421489 



© 2001 The Ganssle Group. This work may be used by individuals and companies, but 
all publication rights reserved. 

c7 = 0.000000002087675698165412591559 
c8 =-0.0000000000114707451267755432394 
c9 = 0.0000000000000477945439406649917 
c10=-0.00000000000000015612263428827781 
c11= 0.00000000000000000039912654507924 
cos(x)= c1 + x2(c2 + x2(c3 + x2(c4 + x2(c5 + x2(c6 +  

       x2(c7 + x2(c8 + x2(c9 + x2(c10 + x2*c11))))))))) 
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Tangent 
The tangent of an angle is defined as tan(x)=sin(x)/cos(x). Unhappily this is not 
the best choice, though, for doing an approximation. As cos(x) approaches zero the errors 
propagate rapidly. Further, at some points like π/4 (see the previous graphs of sine and 
cosine errors) the errors of sine and cosine reinforce each other; both are large and have 
the same sign. 
 
So we’re best off using a separate approximation for the tangent. All of the 
approximations we’ll use generate a valid tangent for angles in the range of 0 to π/4 (0 to 
45 degrees), so once again a range reduction function will translate angles to this set of 
values. 

 
The code above does the range reduction and then calls tan_32. When using the higher 
precision approximations substitute the appropriate function name for tan_32. 
 
The reduction works much like that for cosine, except that it divides the circle into 
octants and proceeds from there. One quirk is that the argument is multiplied by 4/π. This 
is because the approximations themselves actually solve for tan((π/4)x). 
The listings that follow give the algorithms needed.  
 
Remember that tan(90) and tan(270) both equal infinity. As the input argument gets close 
to 90 or 270 the value of the tangent skyrockets, as illustrated on the following error 
charts. Never take a tangent close to 90 or 270 degrees!  
 

// 
//  This is the main tangent approximation "driver" 
// It reduces the input argument's range to [0, pi/4], 
// and then calls the approximator.  
// Enter with positive angles only. 
// 
// WARNING: We do not test for the tangent approaching infinity, 
// which it will at x=pi/2 and x=3*pi/2. If this is a problem 
// in your application, take appropriate action. 
// 
float tan_32(float x){ 
 int octant;     // what octant are we in? 
 
 x=fmod(x, twopi);    // Get rid of values >2 *pi 
 octant=int(x/qtrpi);   // Get octant # (0 to 7) 
 switch (octant){ 
 case 0: return      tan_32s(x              *four_over_pi); 
 case 1: return  1.0/tan_32s((halfpi-x)     *four_over_pi); 
 case 2: return -1.0/tan_32s((x-halfpi)     *four_over_pi); 
 case 3: return -    tan_32s((pi-x)         *four_over_pi); 
 case 4: return      tan_32s((x-pi)         *four_over_pi); 
 case 5: return  1.0/tan_32s((threehalfpi-x)*four_over_pi); 
 case 6: return -1.0/tan_32s((x-threehalfpi)*four_over_pi); 
 case 7: return -    tan_32s((twopi-x)      *four_over_pi); 
 } 
} 
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tan_32 computes the tangent of π/4*x to about 3.2 digits of accuracy. Use the range 
reduction code to translate the argument to 0 to π/4, and of course to compensate for the 
peculiar “π/4” bias required by this routine. Note that the graphed errors are percentage 
error, not absolute. 

// ********************************************************* 
// *** 
// ***   Routines to compute tangent to 3.2 digits 
// ***  of accuracy.  
// *** 
// ********************************************************* 
// 
//  tan_32s computes tan(pi*x/4) 
// 
//  Accurate to about 3.2 decimal digits over the range [0, pi/4]. 
//  The input argument is in radians. Note that the function 
//  computes tan(pi*x/4), NOT tan(x); it's up to the range 
//  reduction algorithm that calls this to scale things properly. 
// 
//  Algorithm: 
//  tan(x)= x*c1/(c2 + x**2) 
// 
float tan_32s(float x) 
{ 
const float c1=-3.6112171; 
const float c2=-4.6133253; 
float x2;     // The input argument squared 
 
x2=x * x; 
return (x*c1/(c2 + x2)); 
} 
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tan_56 computes the tangent of π/4*x to about 5.6 digits of accuracy. Use the range 
reduction code to translate the argument to 0 to π/4, and of course to compensate for the 
peculiar “π/4” bias required by this routine. Note that the graphed errors are percentage 
error, not absolute. 

// ********************************************************* 
// *** 
// ***   Routines to compute tangent to 5.6 digits 
// ***  of accuracy.  
// *** 
// ********************************************************* 
// 
//  tan_56s computes tan(pi*x/4) 
// 
//  Accurate to about 5.6 decimal digits over the range [0, pi/4]. 
//  The input argument is in radians. Note that the function 
//  computes tan(pi*x/4), NOT tan(x); it's up to the range 
//  reduction algorithm that calls this to scale things properly. 
// 
//  Algorithm: 
//  tan(x)= x(c1 + c2*x**2)/(c3 + x**2) 
// 
float tan_56s(float x) 
{ 
const float c1=-3.16783027; 
const float c2= 0.134516124; 
const float c3=-4.033321984; 
float x2;     // The input argument squared 
 
x2=x * x; 
return (x*(c1 + c2 * x2)/(c3 + x2)); 
} 
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tan_82 computes the tangent of π/4*x to about 8.2 digits of accuracy. Use the range 
reduction code to translate the argument to 0 to π/4, and of course to compensate for the 
peculiar “π/4” bias required by this routine. Note that variables are declared as “double”. 
The graphed errors are percentage error, not absolute. 

// ********************************************************* 
// *** 
// ***   Routines to compute tangent to 8.2 digits 
// ***  of accuracy.  
// *** 
// ********************************************************* 
// 
//  tan_82s computes tan(pi*x/4) 
// 
//  Accurate to about 8.2 decimal digits over the range [0, pi/4]. 
//  The input argument is in radians. Note that the function 
//  computes tan(pi*x/4), NOT tan(x); it's up to the range 
//  reduction algorithm that calls this to scale things properly. 
// 
//  Algorithm: 
//  tan(x)= x(c1 + c2*x**2)/(c3 + c4*x**2 + x**4) 
// 
double tan_82s(double x) 
{ 
const double c1= 211.849369664121; 
const double c2=- 12.5288887278448 ; 
const double c3= 269.7350131214121; 
const double c4=- 71.4145309347748; 
double x2;     // The input argument squared 
 
x2=x * x; 
return (x*(c1 + c2 * x2)/(c3 + x2*(c4 + x2))); 
} 



© 2001 The Ganssle Group. This work may be used by individuals and companies, but 
all publication rights reserved. 

tan_14 percentage error
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tan_141 computes the tangent of π/4*x to about 14.1 digits of accuracy. Use the range 
reduction code to translate the argument to 0 to π/4, and of course to compensate for the 
peculiar “π/4” bias required by this routine. Note that variables are declared as “double”. 
The graphed errors are percentage error, not absolute. 

// ********************************************************* 
// *** 
// ***   Routines to compute tangent to 14 digits 
// ***  of accuracy.  
// *** 
// ********************************************************* 
// 
//  tan_14s computes tan(pi*x/4) 
// 
//  Accurate to about 14 decimal digits over the range [0, pi/4]. 
//  The input argument is in radians. Note that the function 
//  computes tan(pi*x/4), NOT tan(x); it's up to the range 
//  reduction algorithm that calls this to scale things properly. 
// 
//  Algorithm: 
//  tan(x)= x(c1 + c2*x**2 + c3*x**4)/(c4 + c5*x**2 + c6*x**4 + x**6) 
// 
double tan_14s(double x) 
{ 
const double c1=-34287.4662577359568109624; 
const double c2=  2566.7175462315050423295; 
const double c3=-   26.5366371951731325438; 
const double c4=-43656.1579281292375769579; 
const double c5= 12244.4839556747426927793; 
const double c6=-  336.611376245464339493; 
double x2;     // The input argument squared 
 
x2=x * x; 
return (x*(c1 + x2*(c2 + x2*c3))/(c4 + x2*(c5 + x2*(c6 + x2)))); 
} 
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Higher Precision Tangents 
Given a large enough polynomial there’s no limit to the possible accuracy. A few more 
algorithms are listed here. These are all valid for the range of 0 to π/4, and all should use 
the previous range reduction algorithm to change any angle into one within this range. 
All take an input argument in radians, though it is expected to be mangled by the π/4 
factor. The prior range reducer will correct for this. 
  
No graphs are included because these exceed the accuracy of the typical compiler’s built-
in cosine function… so there’s nothing to plot the data against. 
 
Note that C’s double type on most computers carries about 15 digits of precision. So 
for these algorithms, especially for the 20.2 and 23.1 digit versions, you’ll need to use a 
data type that offers more bits. Some C’s support a long double. But check the 
manual carefully! Microsoft’s Visual C++, for instance, while it does support the long 
double keyword, converts all of these to double.  
 
 
Accurate to about 20.3 digits over the range of 0 to π/4: 

c1= 10881241.46289544215469695742 
c2=-  895306.0870564145957447087575 
c2=    14181.99563014366386894487566 
c3=-      45.63638305432707847378129653 
c4= 13854426.92637036839270054048 
c5=- 3988641.468163077300701338784 
c6=   135299.4744550023680867559195 
c7=-    1014.19757617656429288596025 
tan(xπ/4)=x(c1 + x2(c2 + x2(c3 + x2*c4))) 

     /(c5 + x2(c6 + x2(c7 + x2))) 
 
Accurate to about 23.6 digits over the range of 0 to π/4: 

c1= 4130240.558996024013440146267 
c2=- 349781.8562517381616631012487 
c3=    6170.317758142494245331944348 
c4=-     27.94920941480194872760036319 
c5=       0.0175143807040383602666563058 
c6= 5258785.647179987798541780825 
c7=-1526650.549072940686776259893 
c8=   54962.51616062905361152230566 
c9=-    497.495460280917265024506937 
tan(xπ/4)=x(c1 + x2(c2 + x2(c3 + x2(c4 + x2*c5)))) 

     /(c6 + x2(c7 + x2(c8 + x2(c9 + x2)))) 
 
 
 
 
 
 



© 2001 The Ganssle Group. This work may be used by individuals and companies, but 
all publication rights reserved. 

Arctangent, arcsine and arccosine 
The arctangent is the same as the inverse tangent, so arctan(tan(x))=x. It’s often denoted 
as “atan(x)” or “tan-1(x)”. 
 
In practice the approximations for inverse sine an cosine aren’t too useful; mostly we 
derive these from the arctangent as follows: 
 

Arcsine(x) = atan(x/√(1-x2)) 
Arccosine(x) = π/2 – arcsine(x)  

= π/2 – atan(x/√(1-x2)) 
 
The approximations are valid for the range of  0 to π /12. The following code, based on 
that by Jack Crenshaw in his Math Toolkit for Real-Time Programming, reduces the 
range appropriately: 
 

 
 
 

// 
//  This is the main arctangent approximation "driver" 
// It reduces the input argument's range to [0, pi/12], 
// and then calls the approximator.  
// 
// 
double atan_66(double x){ 
double y;     // return from atan__s function 
int complement= FALSE;    // true if arg was >1  
int region= FALSE;    // true depending on region arg is in 
int sign= FALSE;    // true if arg was < 0 
 
if (x <0 ){ 
 x=-x; 
 sign=TRUE;    // arctan(-x)=-arctan(x) 
} 
if (x > 1.0){ 
 x=1.0/x;    // keep arg between 0 and 1 
 complement=TRUE; 
} 
if (x > tantwelfthpi){ 
 x = (x-tansixthpi)/(1+tansixthpi*x); // reduce arg to under tan(pi/12) 
 region=TRUE; 
} 
 
y=atan_66s(x);     // run the approximation 
if (region) y+=sixthpi;   // correct for region we're in 
if (complement)y=halfpi-y;   // correct for 1/x if we did that 
if (sign)y=-y;     // correct for negative arg 
return (y); 
 
} 
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atan_66 Errors
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atan_66 computes the arctangent to about 6.6 decimal digits of accuracy using a simple 
rational polynomial. It’s input range is 0 to π /12; use the previous range reduction code.

// ********************************************************* 
// *** 
// ***   Routines to compute arctangent to 6.6 digits 
// ***  of accuracy.  
// *** 
// ********************************************************* 
// 
//  atan_66s computes atan(x) 
// 
//  Accurate to about 6.6 decimal digits over the range [0, pi/12]. 
// 
//  Algorithm: 
//  atan(x)= x(c1 + c2*x**2)/(c3 + x**2) 
// 
double atan_66s(double x) 
{ 
const double c1=1.6867629106; 
const double c2=0.4378497304; 
const double c3=1.6867633134; 
 
 
double x2;      // The input argument squared 
 
x2=x * x; 
return (x*(c1 + x2*c2)/(c3 + x2)); 
} 
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atan_137 Errors
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atan_137 computes the arctangent to about 13.7 decimal digits of accuracy using a simple 
rational polynomial. It’s input range is 0 to π /12; use the previous range reduction code. 

// ********************************************************* 
// *** 
// ***   Routines to compute arctangent to 13.7 digits 
// ***  of accuracy.  
// *** 
// ********************************************************* 
// 
//  atan_137s computes atan(x) 
// 
//  Accurate to about 13.7 decimal digits over the range [0, pi/12]. 
// 
//  Algorithm: 
//  atan(x)= x(c1 + c2*x**2 + c3*x**4)/(c4 + c5*x**2 + c6*x**4 + x**6) 
// 
double atan_137s(double x) 
{ 
const double c1= 48.70107004404898384; 
const double c2= 49.5326263772254345; 
const double c3=  9.40604244231624; 
const double c4= 48.70107004404996166; 
const double c5= 65.7663163908956299; 
const double c6= 21.587934067020262; 
 
double x2;      // The input argument squared 
 
x2=x * x; 
return (x*(c1 + x2*(c2 + x2*c3))/(c4 + x2*(c5 + x2*(c6 + x2)))); 
} 


