

A Guide to Code Inspections

Jack G. Ganssle

jack@ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

There is a silver bullet that can drastically improve the rate you develop code while also
reducing delivered bugs.

Though this bit of magic can reduce debugging time by an easy factor of 10 or more,
despite the fact that it’s a technique well known since 1976, and even though neither
tools nor expensive new resources are needed, few embedded folks use it.

Formal code inspections are probably the most important tool you can use to get your
code out faster with fewer bugs. The inspection plays on the well-known fact that “two
heads are better than one”. The goal is to identify and remove bugs before testing the
code.

Effectiveness
Those that are aware of the method often reject it because of the assumed “hassle factor”.
Usually few developers are aware of the benefits that have been so carefully quantified
over time. Let’s look at some of the data.

The very best of inspection practices yield stunning results. For example, IBM manages
to remove 82% of all defects before testing even starts!

One study showed that, as a rule of thumb, each defect identified during inspection saves
around 9 hours of time downstream.

AT&T found inspections led to 14% increase in productivity and tenfold increase in
quality.

HP found 80% of the errors detected during inspections were unlikely to be caught by
testing.

HP, Shell Research, Bell Northern, and AT&T all found inspections 20 to 30 times more
efficient than testing in detecting errors.

IBM found inspections gave a 23% increase in productivity and a 38% reduction in bugs
detected after unit test.

So, though the inspection may cost you 20% extra time during coding, debug times can
shrink by an order of magnitude or more. The reduced number of bugs in the final
product means you’ll spend less time in the mind-numbing weariness of maintenance as
well.

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

The Inspection Team
The best inspections come about from properly organized teams. Keep management off
the team! Experience indicates that when a manager is involved usually only the most
superficial bugs are caught, since no one wishes to show the author to be the cause of
major program defects.

Four formal roles exist: the Moderator, Reader, Recorder, and Author.

The Moderator, who must be very competent technically, leads the inspection process.
He or she paces the meeting, coaches other team members, deals with scheduling a
meeting place and disseminating materials before the meeting, and follows up on rework
(if any).

The Reader takes the team through the code by paraphrasing its operation. Never let the
Author take this role, since he may read what he meant instead of what he implemented.

A Recorder notes each error on a standard form. This frees the other team members to
focus on thinking deeply about the code.

The Author’s role is to understand the errors found and to illuminate unclear areas. As
code inspections are never confrontational, the Author should never be in a position of
defending the code.

An additional role is that of Trainee. No one seems to have a clear idea how to create
embedded developers. One technique is to include new folks (only one or two per team)
into the code inspection. The Trainee(s) then get a deep look inside of the company’s
code, and an understanding of how the code operates.

It’s tempting to reduce the team size by sharing roles. Bear in mind that Bull HN found
four person inspection teams are twice as efficient and twice as effective as three person
teams. A code inspection with three people (perhaps using the Author as the Recorder)
surely beats none at all, but do try to fill each role separately.

The Process
Code inspections are a process consisting of several steps; all are required for optimal
results. The steps are:

Planning - When the code compiles cleanly (no errors or warning messages), and after
it passes through Lint (if used) the Author submits listings to the Moderator, who forms
an inspection team. The moderator distributes listings to each team member, as well as
other related documents such as design requirements and documentation. The bulk of the
Planning process is done by the Moderator, who can use email to coordinate with team
members. An effective Moderator respects the time constraints of his colleagues and
avoids interrupting them.

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Overview - This optional step is a meeting for cases where the inspection team members
are not familiar with the development project. The Author provides enough background
to team members to facilitate their understanding of the code.

Preparation - Inspectors individually examine the code and related materials. They use
a checklist to ensure they check all potential problem areas. Each inspector marks up his
or her copy of the code listing with suspected problem areas.

Inspection Meeting - The entire team meets to review the code. The Moderator runs
the meeting tightly. The only subject for discussion is the code under review; any other
subject is simply not appropriate and not allowed.

The person designated as Reader presents the code by paraphrasing the meaning of small
sections of code in a context higher than that of the code itself. In other words, the
Reader is translating short code snippets from computer-lingo to English to ensure the
code’s implementation has the correct meaning.

The Reader continuously decides how many lines of code to paraphrase, picking a
number that allows reasonable extraction of meaning. Typically he’s paraphrasing 2-3
lines at a time. He paraphrases every decision point, every branch, case, etc. One study
concluded that only 50% of the code gets executed during typical tests, so be sure the
inspection looks at everything.

Use a checklist to be sure you’re looking at all important items. See the “Code Inspection
Checklist” for details.

Record all errors and classify them as Major or Minor. A Major bug is one that if not
removed could result in a problem that the customer will see. Minor bugs are those that
include spelling errors, non-compliance with the firmware standards, and poor
workmanship that does not lead to a major error.

Why the classification? Because when the pressure is on, when the deadline looms near,
management will demand that you drop inspections as they don’t seem like “real work.”
A list of classified bugs gives you the ammunition needed to make it clear that dropping
inspections will yield more errors and slower delivery.

Two forms get filled out. The “Code Inspection Checklist” is a summary of the number
of errors of each type that’s found. It’s used for understanding how effective the
inspection process is.. The “Inspection Error List” is the details of each error requiring
rework.

The code itself is the only thing under review; the author may not be criticized. One
effective way of defusing the tension in starting up new inspection processes (before the

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

team members are truly comfortable with it) is to have the Author supply a pizza for the
meeting. Then he seems like the good guy.

At this meeting no attempt is made to rework the code, or to come up with alternative
approaches. Find errors and log them; let the Author deal with implementing solutions.
The Moderator must keep the meeting fast-paced and efficient. In fact, a reasonable
review rate is between 150 and 200 non-blank lines per hour.

Note that comment lines require as much review as code lines. Misspellings, lousy
grammar, and poor communication of ideas are as deadly in comments as outright bugs
in code. Firmware must do two things to be acceptable: it must work, and it must
communicate its meaning to a future version of yourself - and to others. The comments
are a critical part of this and deserve as much attention as the code itself.

It’s worthwhile to compare the size of the code to the estimate originally produced (if
any!) when the project was scheduled. If it varies significantly from the estimate figure
out why, so you can learn from your estimation process.

Limit inspection meetings to a maximum of two hours. At the conclusion of the review of
each function decide whether the code should be accepted as is or sent back for rework.

Rework - The Author makes all suggested corrections, gets a clean compile (and Lint if
used) and sends it back to the Moderator.

Follow-up - The Moderator checks the reworked code. If the Moderator is satisfied the
inspection is formally complete and the code may be tested.

Other Points
One hidden benefit of code inspections is their intrinsic advertising value. We talk about
software reuse, while all too often failing spectacularly at it. Reuse is certainly tough,
requiring a lot of discipline and work. One reason it fails, though, is simply because
people are not aware of the code. If you don’t know there’s a function on the shelf, ready
to rock ‘n roll, then there’s no chance you’ll reuse it. The inspection makes more people
aware of what code exists.

The literature is full of the pros and cons of inspecting code before you get a clean
compile. My feeling is that the compiler is nothing more than a tool, one that very
cheaply and quickly picks up the stupid silly errors we all make. Compile first, and let the
tool rather than expensive people pick up the simple mistakes.

Along those same lines, I also believe that the only good compile is a clean compile. No
error messages. No warning messages. Warnings are deadly when some other
programmer, maybe years from now, tries to change a line. When presented with a
screenful of warnings he’ll have no idea if these are normal or a symptom of a problem.

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Conclusion
Inspections break the dysfunctional code-compile-debug cycle. We know firmware is
hideously complex and awfully prone to failure. It’s crystal clear from data, both
quantitative and anecdotal, that code inspections are the cheapest and most effective bug
beaters in the known universe. Yet few organizations, especially smaller ones, use them
on their firmware.

Inspect all of your code. Make this a habit. Resist the temptation to abandon inspections
when the pressure heats up. Being a software professional means we do the right things,
all of the time. The alternative is to be a hacker - cranking the code out at will with no
formal discipline.

Inspection shouldn’t be limited to code; all specification and design documents benefit
from a similar process.

For those interested in more information, check out the following two books (both very
highly recommended). Both are available from the Computer Literacy Bookstore and
amazon.com:

Software Inspection, Tom Gilb and Dorothy Graham, 1993, TJ Press (London). ISBN 0-
201-63181-4.

Software Inspection - An Industry Best Practice, David Wheeler, Bill Brykczynski and
Reginald Meeson, 1996 by IEEE Computer Society Press (CA), ISBN 0-8186-7340-0.

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Code Inspection Checklist

Project: _____________________________
Author: _____________________________
Function Name: _____________________________
Date: _____________________________

Number of errors Error Type
Major Minor
 Code does not meet firmware standards
 Function size and complexity unreasonable
 Unclear expression of ideas in the code
 Poor encapsulation
 Function prototypes not correctly used
 Data types do not match
 Uninitialized variables at start of function
 Uninitialized variables going into loops
 Poor logic - won’t function as needed
 Poor commenting
 Error condition not caught (e.g., return codes from malloc())?
 Switch statement without a default case (if only a subset of the

possible conditions used)?
 Incorrect syntax - such as proper use of ==, =, &&, &, etc.
 Non reentrant code in dangerous places
 Slow code in an area where speed is important
 Other
 Other

A Major bug is one that if not removed could result in a problem that the customer will
see. Minor bugs are those that include spelling errors, non-compliance with the firmware
standards, and poor workmanship that does not lead to a major error.

A Guide to Code Inspections

© 2001 The Ganssle Group. This work may be used by individuals and companies, but
all publication rights reserved.

Inspection Error List

Project: _____________________________
Author: _____________________________
Function Name: _____________________________
Date: _____________________________
Rework required? _____________

Location Error Description Major Minor

Better Firmware… Faster!

A One-Day
Seminar

Presented at

Your Company

Does your

schedule prevent
you from traveling?

This doesn’t mean you
have to pass this great

opportunity by.

Presented by Jack
Ganssle, technical
editor of Embedded

Systems Programming
Magazine, author of The

Art of Developing
Embedded Systems, The

Art of Programming
Embedded Systems, The
Firmware Handbook, and
The Embedded Systems

Dictionary

More information at
www.ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
(410) 504-6660

fax: (647) 439-1454
info@ganssle.com
www.ganssle.com

For Engineers and Programmers

This seminar will teach you new ways to build higher
quality products in half the time.

80% of all embedded systems are delivered late…
Sure, you can put in more hours. Be a hero. But working harder is not a
sustainable way to meet schedules. We’ll show you how to plug productivity
leaks. How to manage creeping featurism. And ways to balance the conflicting
forces of schedules, quality and functionality.

… yet it’s not hard to double development productivity
Firmware is the most expensive thing in the universe, yet we do little to control its
costs. Most teams deliver late, take the heat for missing the deadline, and start the
next project having learned nothing from the last. Strangely, experience is not
correlated with fast. But knowledge is, and we’ll give you the information you need
to build code more efficiently, gleaned from hundreds of embedded projects around
the world.

Bugs are the #1 cause of late projects…
New code generally has 50 to 100 bugs per thousand lines. Traditional debugging is
the slowest way to find bugs. We’ll teach you better techniques proven to be up to
20 times more efficient. And show simple tools that find the nightmarish real-time
problems unique to embedded systems.

… followed by poor scheduling
Though capricious schedules assigned without regard for the workload are common,
even developers who make an honest effort usually fail. We’ll show you how to
decompose a product into schedulable units, and how to use killer techniques like
Wideband Delphi to create more accurate estimates.

 Learn From The Industry’s Guru
Spend a day with Jack Ganssle, well-known author of the most popular books on
embedded systems, technical editor and columnist for Embedded Systems
Programming, and designer of over 100 embedded products. You’ll learn new ways
to produce projects fast without sacrificing quality. This seminar is the only non-
vendor training event that shows you practical solutions that you can implement
immediately. We’ll cover technical issues – like how to write embedded drivers
and isolate performance problems – as well as practical process ideas, including
how to manage your people and projects. Contact us to learn how we can award
each of the attendees 0.7 Continuing Education Units.!

Seminar Leader

Jack Ganssle has written over 300 articles in Embedded Systems Programming, EDN, and other magazines.
His three books, The Art of Programming Embedded Systems, The Art of Developing Embedded Systems,
and his most recent, The Embedded Systems Dictionary are the industry’s standard reference works

Jack lectures internationally at conferences and to businesses, and was this year’s keynote speaker at the Embedded
Systems Conference. He founded three companies, including one of the largest embedded tool providers. His extensive
product development experience forged his unique approach to building better firmware faster.

Jack has helped over 600 companies and thousands of developers improve their firmware and consistently deliver better
products on-time and on-budget.

Course Outline
Languages

• C, C++ or Java?
• Code reuse – a myth? How can you benefit?
• Stacks and heaps – deadly resources you can control.

Structuring Embedded Systems

• Manage features… or miss the schedule!
• Do commercial RTOSes make sense?
• Five design schemes for faster development.

Overcoming Deadline Madness

• Negotiate realistic deadlines… or deliver late.
• Scheduling – the science versus the art.
• Overcoming the biggest productivity busters.

Stamp Out Bugs!

• Unhappy truths of ICEs, BDMs, and debuggers.
• Managing bugs to get good code fast.
• Quick code inspections that keep the schedule on-track.
• Cool ways to find hardware/software glitches.

Managing Real-Time Code

• Design predictable real-time code.
• Preventing system performance debacles.
• Troubleshooting and eliminating erratic crashes.
• Build better interrupt handlers.

Interfacing to Hardware

• Understanding high-speed signal problems.
• Building peripheral drivers faster.
• Cheap – and expensive – ways to probe SMT parts.

How to Learn from Failures… and Successes

• Embedded disasters, and what we can learn .
• Using postmortems to accelerate the product delivery.
• Seven step plan to firmware success.

Do those C/C++ runtime routines execute in a usec or a week?
This trig function is all over the map, from 6 to 15 msec. You’ll
learn to rewrite real-time code proactively, anticipation timing
issues before debugging.

Why Take This Course?
Frustrated with schedule slippages? Bugs driving you
batty? Product quality sub-par? Can you afford not to
take this class?

We’ll teach you how to get your products to market
faster with fewer defects. Our recommendations are
practical, useful today, and tightly focused on
embedded system development. Don’t expect to hear
another clever but ultimately discarded software
methodology. You’ll also take home a 150-page
handbook with algorithms, ideas and solutions to
common embedded problems.

0

10

20

30

40

50

60

495
0

571
8

648
6

725
4

802
2

879
0

955
8

103
26

110
94

118
62

12
63

0
133

98
141

66
149

34

Microseconds

P
ro

b
ab

ili
ty

Here is what some
of our attendees

have said:

If you can’t take the time to travel, we can present this seminar
 at your facility. We will train all of your developers and focus on the challenges

unique to your products and team.

 Thanks for the terrific seminar here at ALSTROM yesterday!

It got rave reviews from a pretty tough crowd.
Cheryl Saks, ALSTROM

Thanks for a valuable, pragmatic, and informative lesson in embedded systems design.

 All the attendees thought it was well worth their time.
Craig DeFilippo, Pitney Bowes

I just wanted to thank you again for the great class last week. With no exceptions, all of the feedback from the

participants was extremely positive. We look forward to incorporating many of the suggestions and observations into
making our work here more efficient and higher quality.

Carol Bateman, INDesign LLC

Here are just a few of the companies where Jack has presented this seminar:
Sony-Ericsson, Northup Grumman, Dell, Western Digital, Bayer, Seagate, Whirlpool, Cutler
Hammer, Symbol, Visteon, Honeywell, Kodak and Western Digital.

Did you know that…

… doubling the size of the code results in much more than twice the work? In this seminar you’ll learn ways unique

to embedded systems to partition your firmware to keep schedules from skyrocketing out of control.

… you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a 5-

10% error rate – 500 or more bugs in a little 10k LOC program. Imagine the impact finding all those has on the
schedule! Learn simple solutions that don’t require revolutionizing the engineering department.

… you can create a predictable real-time design? This class will show you how to measure the system’s performance,

manage reentrancy, and implement ISRs with the least amount of pain. You’ll even study real timing data for
common C constructs on various CPUs.

… a 20% reduction in processor loading slashes development time? Learn to keep loading low while simplifying

overall system design.

… reuse is usually a waste of time? Most companies fail miserably at it. Though promoted as the solution to the

software crisis, real reuse is much tougher than advertised. You’ll learn the ingredients of successful reuse.

What are you doing to upgrade your skills? What are you doing to help your engineers succeed? Do you

consistently produce quality firmware on schedule? If not . . . what are you doing about it?

Contact us for info on how we can bring this seminar to your company.
e-mail: info@ganssle.com or call us at 410-504-6660.

